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SUMMARY OF METHODS FOR CALCULATING

STABILITY AND RIWONSE AND FOR

DYNAMIC LAT&IL

ESTIMATING

LATERAL STABILITY DERIVATIVES

By John P. CsmpbelJ.and Marion O. McKinney

SUMMARY

A summary of methods for making dynamic lateral stability and
response calculations and for estimating the aerodynamic stability
derivatives required for use in these calculations is presented. The

. processes of performing calculations of the time histories of lateral
motions, of the period and damping of these motions, and of the lateral
stability boundaries are presented as a series of simple straightforward

. steps. Existing methods for estimating the stability derivatives are
summarized and, in some cases, simple new empirical formulas are pre-
sented. Reference is also made to reports presenting experimental data

. that should be useful in making estimates of the derivatives. Detafled
estimation methods are presented for low-subsonic-speed conditions but
only a brief discussion and a list of references are given for transonic-

●

and supersonic-speed conditions.

INTRODUCTION

Dynsmic lateral stability has not received widespread attention in
the past because it has not generally been a serious problem in the
design of airplanes. Consideration of dynamic lateral stability has
recently become more important, however, because current design trends
toward the use of low aspect ratio, sweepback, and higher wing loading
have, in many cases, led to unsatisfactory dynamic lateral stability.
Airplane designers are therefore finding it necessary to make such calcu-
lations in connection with the Hesign and modification of aifilanes. In

-..—

many cases these calculations are tificult to perform for designers who
have had no previous experience in theoretical stability work because
most of the published theoretical analyses are not presented in a form
that is especially suited to the computation of dynsmic stability. The
estimation of the stability derivatives required in dyhsmic’stability
calculations has also been found to be difficult in many cases. Although
theoretical and experimental data on these derivatives have appeared in

.- --

..—
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numerous publications, no single publication has presented methods for
*

estimating the derivati~s for all types ot airplanes.

One approach to a presentation of methods of calculating stability
b

and estimating stability derivatives in a form suitable for use by
designers was made by Zimmerman in reference 1. Although this report
has proved to be of valuable assistance to designers in making dynamic -
stability calculations, recent trends in airplane design have caused its
usefulness to be seriously limited. For example, the equations of refer-
ence 1 do not include the product-of-inertia terms which have been shown
by recent studies to be very important in some cases. (See references 2
and 3.) Moreover, the calculation of the time histories of lateral
motions, one type of calculation that has been the subject of Increasing
interest in the last few years (references4 to 7), is not covered in
reference 1. The methods of estimating stability derivatives presented
in reference 1 are also limited because they apply only to airplanes
having unswept wings with an aspect ratio of 6 operating at speeds at
which compressibility effects are negligible. The purpose of the present
paper is to etiend the methods of reference 1 to include the methods of .
computation which are of current interest to designers and to include
methods of estimating derivatives for configurations and flight conditions
which are now being considered. .

This paper summarizes and reduces to simple straightforward steps
methods for computing the time histories of lateral motions, the period .

and damping of these motions, and the lateral stability boundaries.
Existing methods of estimating stability derivatives for a variety of
airplane configurations are summarized and} in some cases, simple new

a

empirical formulas are presented. Reference is also made to reports
presenting experimental data that should be useful in making estimates
of these derivatives.

SYMBOLS

All forces and moments are referred to the stability system of axes
which is defined in figure 1. The following definitions apply to the
symbols except where they are otherwise deftned:

m mass

s wing

e wing

b wing

yd spell

of airplane, slugs

area, square feet

mean chord, feet (b/A)

span, feet / .

of that part of wing that has tip dihedral, feet
. .
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z tail length (distsace from center of pressure of vertical
tail to center of gra~ity, measured parallel to longi-
tudinal stability axis; values of Z must be calculated
for each angle of attack), feet

.. s

x

d
.

ZE

z

A

A

L

r

%2

t

v

kxo

‘%

average fuselage height at wing root, feet

average fuselage width at wing root, feet

vertical distance of quarter chord of wing root chord from
fuselage center line, positive downward, feet

nondimensional time parsmeter based on spsm (Vt/b)

longitudinal distance resrward from airplane center of
gravity to wing aerodynamic center, feet

longitudinal distance from leading edge of vertical.tail
chord to horizontal tail aerodynamic center, feet
(see fig. 6)

vertical distance from horizontal tail to base of vertical
tail, feet (see fig. 6)

height of center of pressure of.vertical tail above longi-
tudinal stability axis; vslues of z must be calculated
for each angle of attack, feet

aspect ratio

sweepback of wing quarter-chord line, degrees

taper ratio (Tip chord/Root chord)j also, differential
operator in Laplace transform

dihedrsl.angle, degrees (see sketch of fig. 9)

dihedrsl single

time, seconds

airspeed, feet

of wing tip, degrees

per second

radius of ~ation about principal
inertia, feet

radius of ~ation about principal
feet

longitudinal SXis of

normal sxis of inertia,
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,

m

*

radius of gyration about X

I

●

kXo2cos2q + kZo2sin2~
)

axis, feet

8xLs, feet

kx

kZ radius of gyration about Z

(~
kzo2cos2q + kxo2sin2q

)

Ikxo b

~oib

I
kx b

/
kZ b

Kxo

Kzo.

KX

KZ

kxz product-of-inertia factor
[ ) )
kzo2 - kXo2 sin q cos q

.

kxz
Kxz = —

#
.

Kxz
Kl=—

KX2

——

a

—

angle of attack of principal longitudinal sxis of inertia,
degrees (see fig. 2)

angle of climb, degrees (see fig. 2)Y

a angle of attack of longitudinal body axis, degrees
(see fig. 2)

singlebetween principal longitudink.1axis of inertia ad
longitudinal body axis, degrees (see fig. 2)

air density, slugs per cubic foot
.

angle of bank, radians



.

.

.

. .

angle of yaw, radians

angle of sideslip, radians

rolling velocity, radians per second (d@/dt)

yawing velocity, radians per second (dW/dt)

initial angle of bank, radians

initial angle of yaw, radians

initial mgle of sideslip, radians

nondimensional initial rolling velocity (d@/du)

nondi.mensionslinitial yawing velocity (dW/da)

Routh’s discriminant os resl part of complex root R + Ii

imaginary part of complex root R + Ii

coefficients of the characteristic biquadratic equation

pl,p2, ... P7 factors of the B, C, and D coefficients

klj~2~~3yk4 roots of characteristic biquadratic equation

D differential operator (d/da)

P period of the lateral oscillation, seconds

T1/2 time to dsmp to one-half amplitude, seconds

T time conversion factor (m/pSV)

G nondimensional time factor (t/T)

IJ relative density factor (m/pSb)

Lc impressed rolling moment, foot-pounds

Nc impressed yawing moment, foot-pounds

Yc impressed lateral force, pounds

5

.-

-..—

.—
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*

cl= impressed

c% impressed

Cyc impressed

rolling-moment coefficient

yawing-moment coefficient

lateral-force coefficient

CL lift coefficient (Lift/qS)

CD drag coefficient (Drag/qS)

c~ rolling-moment coefficient (Rolling moment/qSb)

Cn yawing-moment coefficient (Yawing moment/qSb)

Cy lateral-force coefficient (Lateralforce/qS )

q dynamic pressure, pounds per squsre foot
()
&v2

*L
c~=~

(cDo)a = &(@ -g)

CDO
CL2

=CD-=

&z
c1
p=~

&n

CW = w

&y
c% = ~

&3~
cl =—
1? ~g

acn

c% = ~~

a2y ‘
Cyp = —

ag

—

z.

.
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Zlcz
Clr = —.rb

*2T

acn
%“*-—

2V

.%
‘P 4KX2

Cy
Yp = *

cZr
zr=—

4KX2

cI-l=-—

4 - 4%2
I

7
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yczc
zc=—

2KX2

k%c

‘c=— 2KZ2

Cyc

Yc=~

()Acn-p1

()ACnp p

H

ao

Subscripts:

wing

fus

tail

design

data

exp

V-tail

e

H

increment in Cnp
forces

increment in Cnp
lift

horizontal tail

section lift curve

wing

fuselage

used to designate

used to designate

used to designate
available

experimental

V-tail

effectiw

horizontal tail

.

NACA TN 2409 “

*

producedby lift and induced-drag

.

produced by drag not associated with

.

vertical.tail

design under consideration

desi~ for which force-test data are

a

—

.

.
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CALCULATION OF LATERAL STABILITY .—

AND RESPONSE —— .._.

Vsrious types of calculations may be performed to indicate in some
way the stability of an airplti or the response to gust disturbances
and control manipulations. The calculations most commonly made sre cal-
culations of time histories of disturbed motions
the free motions,

, period and danping of
and spirsl and oscillatory stability boundaries (line~

of neutral dsmping of the spirsl mode and of the lateral oscillations).
Step-by-step procedures for performing these t~es of calculations are
explained in the text and derivations and additional pertinent material
sre presented in appendixes A to D.

The period and demping calculations are the easiest of the three
types to perform. For this reason, end because the dynsmic lateral
stability of airplanes is at present specified in the flying-qualities
requirements in terms of the period snd dsmping of the lateral oscilla-
tion, period and dsmping calculations sre probably the most conmonly
performed.

Recent dynamic stability work has indicated, however, that the
period and dsmping characteristics of the free motions of sm airplane
sre not always a sufficient indication of whether the dynamic behavior
of an airplene following various types of disturbances will be con-
sidered satisfactory. For this reason the calculation of time histories
of the motions of airplanes is becoming more common despite the fact
that these calculations are fairly laborious. The increasing use of
automatic computing machines has also made the calculation of motions

—

more popular.

For many years, calculations of stability boundaries were the type
of calculation most commonly performed. In recent years, however, sta-
bility boundaries have not been considered to give an adequate indica-
tion of stability. Since bound=ies are useful in some cases, however,
(for exsmple, for quick approximation of the effects of changes in
dihedrsl and tail mea) the methods of calculating the spiral and osc5l-
latory stability boundaries are described herein. Lines of constant
period and dsmping of the lateral oscillation are related to stability
boundaries (lines of neutral stability). In some cases these lines of
constant period and dsmping may prove more useful than boundaries. Since
no efiensive use has been made of lines of constant period and dsmping,
however, the methods of calculating these lines (presented in refer-
ences 8 and 9) are not given in the present paper.

The equations -d methods of calculation presented in the present
paper desl specifically with the inherent motions of airplanes for the
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case of three degrees of freedom (roll, yaw, end sideslfp) and linear
stability derivatives. In order to perform siml.larcalculations for
cases involving additional degrees of freedom, nonlinesr derivatives,
or autopilots with time lag, speciaL equat-ionssre required. ‘The
methods and equations for treating these cases are presented in refer-
ences 10 to 18. Additional degrees of freedom for the case of free
controls are treated in references 16 to 18 and for the case of fuel
sloshing are treated In reference 10. The use of nonlinear derivatives
in stability calculations is covered in reference 11. Methods of
treating the effect of autopilots, including the effect of the lag in
the autopilot are presented in references 12 to 15 and 19.

For some cases the effects of aerodynamic time lag are important.
There are two different sources of such lag: (1) the time required for
an aerod-ic tipulse to travel from one component of the airplane to
another (for exsmple, the time required for a change in sidewash at the
wing to reach the tail - a phenomenon commonly referred to as lag of
sidewash); and (2) the time required for the growth end decay of the
aerodynamic loads on the airplane components. For both of these cases
the time-lag effects usually become increasingly important as the period
of the lateral oscillation decreases. The effects of the first type 6f
time lag can be accountedfor in some cases by modification of the sta-
bility derivatives. For example, the effect of the lag of sidewash on
the derivative Cnr is discussed subsequently under the section on

“Estimation o~ Lateral Stability Derivatives’f. In many cases, how-
ever, both types of time lag will require special stability equations.
No general treatment of these cases has been published
cation of the method of treatment may be obtained from
of autopilot lag in references 13 and 15.

CALCULATION OF PERIOD AND DAMPING

but an indi-
the treatments

As pointed out in references 1 and 2, the period and dsmping of the
vsrious modes of the lateral motion may be calculated from the roots of
the characteristic equation

AX4+BA3+c#+Dk+E =0

by the equations

21T
p IT=—

and
loge 2 o.693~

‘1/2 “~Tx- R

●

0
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w

where R represents a real root 1. or the real part of a complex root
, k = R * i% and I represents the imaginary psrt of a complex root.

4 Negative values of T1/2 represent the time required to double amplitude

for unstable modes of the motion.

The values of the coefficients A, B, C, D, and E may be
obtained by the method given in steps 1, 2, and 3 of the section on
“Calculation of Motions”. If the period and time to danp are to be cal.
culated for a number of related cases, however, the values of the coef-
ficients A, B, C, D, and E msy be more conveniently calculated by
a tabulsz procedure such as that shown as table I for making boundsry
calculations.

Methods of determining the roots of the biquadratic characteristic
equation are presented in appendix C.

. CALCULATION OF MOTIONS

Calculation of the latersl motions of an air~lane involves the
integration of three simultaneous differential equations (see
appendix A) to obtain a general solution in terms of the mass and
aero@smic parameters of the airplane. The general equations, once
obtained, can then be used to obtain numerically the motions of any
airplsne in terms of the variation with time of the sngles of bank, yaw,
and sideslip or some function of these singlessuch as rolling or yawing
velocity. Various methods, such as those given in references 20 to 22,
are of course available for inte~ating the differential equations.
Since the problems met in airplane dynamics are fairly complex, however,
many of these methods are not suitable because of the’difficulties of
computation that arise. The method given in reference 4 (based on the
Heaviside operational calculus) is satisfactory for calculating the
forced motions following application of external forces or moments but,
without modification, this method cannot be used to calculate the motions
resulting from initial displacements in bank, yaw, or sideslip or from
initial values of rolling Or yawing angular velocity. A solution based
on the Laplace transformation is more satisfactory than that based on the
Heaviside operational calculus because it permits direct calculation of
the free motions following any initial condition, in addition to calcu-
lation of the forced motions following application of external forces and
moments. The application of the Laplace transformation to the calculation
of lateral motions is outlined in appendix B. The material presented in
this appendix is similar to the work presented in references 5 and 6
except that the mass and aerodynamic stability derivatives have been com-
bined as shown in appendix A to reduce the nunber of arithmetical and
algebraic processes required in numerical solutions.
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.

The process of calculating the motions is presented as a series of
simple though lengthy arithmetical and algebraic steps so”that an under-
standing of the calculus involved in solving the differential equations
is not required. The method as shown is suitable for calculating the
motions as variations of #, *, ~> P, ad r with time for the case
of the free motions following initial angular displacements (@o, *0,
md PO) and aII&lar velocities (D@). and (Ill)0 and for the case of
the forced motions resulting from constant impressed forces and moments

(Lc) Nc, ~d ye). These are the cases for which motions are usually
calculated. It is also possible to calculate the motions resulting from
impressed forces and moments which are arbitrary functions of time by
the methods explained in references 6 and 7.

Motions Resulting from Initial Angular Displacements and Angulsr

Velocities and from Constant IinpressedForces and Moments

The six steps involved in obtaining a specific solution for the
lateral motions of an airplane are:

Step 1:

(a)

(b)

(c)

(d)

Determine values of the following

Mass characteristics:

m, ~, kzo, T, ~d ~

Geometric characteristics:

Sandh

Flight conditions:

v, cL, and Y

Aerodynamic stability derivatives:

parameters:

The methods of determining the values of the aerodynamic stability
derivatives are given in subsequent sections of this paper.

In cases where impressed forces and moments are used as disturbances,
determine the values of the factors

CZC9 Cnc)CYC

.

.

—
.

.

G-

that are appropriate to the particular problem. ---
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Step 2: From the known factors, evsluate the
which are the stability derivatims in the form in
in the calculation of motions:

Zp = J-czp
4KX2

zr=—
41& Czr

T

following psrsmeters
which they are used

. —.

m m=—
pm !J‘s

Yr = ~ Cyr

.

Also, when impressed forces and moments are used, evaluate

.

.

Pczc=—
2KX

2 z= Yc = $ Cyc
. .—

The values of KX2, %2, and Kxz C= be determined

expressions

from the following
-.

—

KX2 = K~2cos2q + K~2sin2q

~2=~2cos2q +Kx2sin2q
o

Kxz =
(
KZ02 )- KX02 sin q cos q

where

Step 3: Solve for the values of the
following coefficients from equations (1)

appropriate
to (4):

ones of the
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.

In all cases solve for the values of A, B, C, D, and E:

A=l - K~K2

B= P1 - AYp

c

1“

= -PIYB + p2 + p5YP + p&r - p6

CL CL
D ‘p5~+p6@~Y+pT

CL CL
E= p3T+P4~tan7

where

P2 =~p%?++p”

J

3

(1)

.

.

.

.

.

p7 . -p2Yp + p3Yp + P~r - P4
—

The quantities PI to P7 are factors of the coefficients B, C, D,

and E which are combinations of terms that &ccur frequently in calcu-
lations of motions resulting from initial angular displacements and
velocities and which are consequently grouped together for convenience.

.

.
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Calculate the values of ~, al, . . . a5 when sol-g for the
* angle of bank @ or the rolling velocity p:

%)=@&

al = @oB + (D@)oA

—

(2)
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Calculate the values of bO, bl, . . ., b5 when solving for

angle of yaw $ or the yawing velocity r:

= *OC - !30P6- J@@)o(K&-~)+@)o(-AYB+Kl~-z -b2

1CK2 + nc

b4 =
[
-@4 + vop~ ]>+ Zc(ll,yp-- @@)op6 + 0“00p5

%?%) + ‘c (%% - zpY$ - Y.P4

.

.

.

.

.

.

.

r

.

.
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Calculate the values of co, cl, . . ., c~” “hen solting<forthe

u

.

.

●

a

angle of sideslip p:

\
co = P& .. ,-

,

CL
Cl=@oA~ +$&T tan 7 + Bopl +“(@)oAYp - (D*)oA(yr - 1) + ‘cA

CL

[
cAtan7 +POP2+ (@)oA >- ~Zpyr + ~Zp +C2 = @op~~+’!fopl 2

(y. - ‘p + %2, - nr)y~ + (W)o~~t=7 +K.wr -

%% - Zpyr + z
~ -(- -ZJY!I‘z+~r+’z+yp”

( CL )(CL CL CL

C4 =
—tany -

‘C%2 )“T~+nc.zr~-zp~tmy

Step 4: Solve for the roots hl~ X22 ~3j ti k4 of the

biquadratic equation

,(4)

(5)m4+Bx3+cA2+Dx+E=o
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where the values of the coefficients A, B, . . ., etc. were given by
the solution of equations (l). Methods of determining the roots of the
biquadratic equation are given in appendix C.

Step 5: Use the coefficients obtained from equations (1) to (~+)
and the roots of equation (5) to solve for the following coefficients!

Calculate the values of the factors Al) A.2~. . ., A6 when
solving for the angle of bank # or the rolling velocity p:

.,
*’

%2=

A3 =

A4 =

a h5+ a h 4+aX 3 + a~ 2 + ak +a
03 13 23 33 43

6.U35 + 5BX34 + 4JX33 + 3Dh32 + 2EA3

a&45 + alh44 + a2k43 + a3A42 + a4L4 + ~

6fi45 + 5BX44 + 4ck43 -t-3Dh42 + 2Eh4

A5=3

A6=j#(a4-a5~ )

(6)

.

.

.

A

.

.
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Calculate the values of the factors BI>
solving for the

B1 =

?2=

B3 z

.

B4 =

angle of yaw II or the yawing

19

B2, ..,, ~tien

velocity r:

boX35 +blk34 + b2X33 +b3X32 -I-b4A3 + b5

~2+b4X4+b54 +b2A43 +b3 4boA45 + blh4

6U45 + 5Bh44 + @2k~3 + 3Dk42 + 2EA4

(7)
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Calculate the values of the factors cl, !22,. . ., c~ when

solving for the angle of sideslip ~: ,.:.

C2 =

C3 =

C4 =

C5 .

If equation

COA15 + cl@ + c2~13 + c3k12 + C4L1

coh2~ + C1A24 + C2L23 ,+c A 2 +C4A2
32

6~25 + 5BX24 + 4ch23 + 3Dk22 + 2EA2

COL35 + clA34 + c@33 + c3~32 + C4A3

6fi35 + 5Bh34 +-4CX33 + 3Dh32 + 2Eh3

c@45 + c~k44 + C@.43 + c3h42 + c4k4

6/iA45+ 5B1.44+ @X43 + 3DA42 + 2Ek4

C4
F

(8)

(5) has conjugate complex roots, the values of the
coefficients (equations (6) to (8)) corresponding to these roots will

.

.

d

.

.

.

4

be con@gate complex. In order to facilitate treatment of this case it
is convenient to establish some special notation. ~is special notation
is explained in appendix D.

.

,
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.

Step 6: The equations of motion are written in “differentform

b depending upon the roots of equation (5). If the characteristic equa-
tion has four resl roots Al, A2, h3, ad A4, the general form of
the equations of motion is used, as follows:

If, as is generally the case, equation (5)
resl roots (R + Ii, R - Ii, X3> ad k4)}
expressed as

p.

r=

cfR
KAe COS(UI + ~A) + A3e*A3 +

has two complex roots and two
the equations of motion may be

(lo)

.

.

.



.
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where

%=2-

ad RA ad 1A are defined in appendix D.

If there are four complex roots (R + Ii, R - Ii,
R’ - I’i), the equations sre

@=

+=

P=

P=

, r=

KAe
UR UR‘

cos(aI + UA) + KA’e cos (uI’ + ~A’) +

KBeaR
aR~

cos(aI + ~) + KB’e cos (aI’ + ~’) +

~eaR UR‘
cos (aI + @ + ~’e cos(aI’ + ~’) +

$~A~zR cOs(al ‘UA + ‘L’ ~j+ ~ +

‘A’- ‘CR’
( !

COS aI’ +~A’ + t~-l~

*~Bm~R COS(I ‘% + +~’$+ % +

%’m ea” Cos ‘1’ + %’ + t~-’ &
( 1

.

X4CAm 2b9 .

.

.

(10a)

Rt + I’i, and

.

.

*

e

(11)

.

.
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m

where

.

.

.

.

●

✎

✎

‘B, =2-

The coefficients KA, KB) ~, WA} ~, and ~ sre deftied in equa-

tions (lOa) and RAY lA, RA’, and lA’ are defined in appendix D. .--,.—

Solve,the appropriate ones of these equations of motion (equa-
tions (9), (10), or (11)) by substituting values of the nondtiensionsl!.
time factor a in the equations and solting for d> *> ~> P> “or r~” ““ ,

Motions Resulting from Arbitrary Disturbances

The motions resulti~”from srbitrsry forcing functions can be
obtained from the motions resulting from constant impressed forces and
moments by the methods explained in references 6 and 7.

A very uqeful ’methodof obtaining the motion resulting from various
abrupt gust and control disturbances is given by Jones in reference 7.
In this paper it is pointed out that, although the component motions of
u airplane-must be calculated simultaneously (that is, by simultaneous
differential equations), the effects of component disturbances may by
the principle of super~sition be calculated separately sad later added
in any desired proportion. Thus, if a given rolling moment causes a
20° bank in 1 second and if a given yawing moment causes a 5° bank in
1 second, the combined effect of both acting simultaneously will be a
25° bank in 1 second. Jones also points out a somewhat similar fact
with regard to the effects of disturbances that sre not applied simul-
taneously. This fact is that, if a given disturbsmce .yhicharises at
the time t = O is later augmented, the effect of the ~crement of
disturbance will run its course independently of the effect of the
original disturbance. For example, in a problem involving the correc-
tion for a aust disturbance by a manipulation of the control, the motion
produced by-the gust disturb&ce can ~e

T: motion caused by the assumed corrective
added to it at any desired point. This
cslly in figure 3.

calculated independently and the
control manipulation can be
example is illustrated graphi-
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The principle of superpositionmay be applied analytically as well
as graphically. The analytical application which makes use of Carson’s
integral or Duhsmel’s integral Is described in references 7 and 23.
This method is useful for calculating the motions resulting from
impressed forces and moments which are arbitrary functions of time. By
application of these methods, the solutions for constant impressed
forces and moments can be used to obtain new solutions for any arbitrary
variation of impressed forces and moments with time which can be
expressed by a mathematical formula. Some stiple variations of
impressed forces and moments with time and their Laplace transforms =e
given in reference 6. The transforms for any other function for which ,
transforms have been worked out may be found in tables of Laplace
trsmsforms.

CALCULATION OF STABILITY BO~AR~S

Oscillatory Stability Boundaries

As pointed out in the preceding section of this report, the degree
of stability of the uncontrolled motions of’sm airplane is indicated by
roots of the characteristic equation

.

.

AX4+BA3+CA2+DX+E. o
r

For stability the real roots or the real part of the complex roots of
the characteristic equation must be negative. A useful discriminant
for determining some of the characteristics of the roots in stabflity
work is Routh’s discriminsnt R (R . BCD - AD2 - B2E). The use of this
discriminant in dynamic stability analyses has been pointed out in msmy
reports, for example, references 1, 2, 3, ~, 21, and 24. Routh has
shown (reference 20) that,if R and the coefficient E are finite,
the necessary and sufficient conditions that the real roots and the
real parts of the complex roots should be negative are that every coef-
ficient of the biquadratic and also R should have the same sign.
Routh also showed that when R = O snd B and D have the ssme sign
there are a pair of complex roots with the real parts zero. Since the
value of the real part of a complex root indicates the stability of an
oscillatory mode of the motion of an airplane, the lateral oscillation
is neutrally stable when R = O and the coefficients B and D have
the same sign. Oscillatory stability boundaries can be determined,
therefore, by solving the equation R = O and checking to determine
whether the signs of B and D are the ssme.

Since two of the most important stability derivatives tifecting
lateral stability are the directional stability derivative Cnp and

.

●
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B

the effective dihedral derivative CZP, boundaries for neutral oscil-

latory stability are usually calculated as a function of these two
. derivatives as illustrated in figure 4. These calculations are gener-

ally csrried out by the method shown in table I.” This table contains a
numerical exsmple snd step-by-step instructions for using the table.
The results of this numerical example are plotted in figure k. The
procedure illustrated in table I is first to assume values of the inde-
pendent variable Cn~ to cover the range for which the boundary is
required. The values of all the other mass and aerodynamic stability
derivatives-except Cz$ are then estimated. The value of Cn~ is
generally assumed to have been varied by vsxying the size of the vertt-
cal tail and consequently the tail contribution to each of the other
stability derivatives varies as Cnp is vsxied. The values of the
coefficients A, B, C, D, and E snd then R are calculated as
functions of Zp:

—

.

The values of Zp. corresponding to the assumed values of Cnp for the

condition of neutral oscillatory stability are next obtained by solving
the expression R = O which is a quadratic in z~ that is of the form

m

a
Finally, the

are obtained

lqzp2+V1ZP+W1=0

values of CZP corresponding to the assumed vslues of Cn
B

from the values of ZR.
P —___

The values of Z~ which satisfy the expression R = O must be
checked to determine whether they satisfy the other condition for
neutral oscillatory stability - that the gign of the coefficients B
and D must be the same. This check can be performed readily by sub-
stituting the values of ZB which satisfy R = O into the expression
for D which is a

Thus, the sign of
w given value of

linear equation of the form

D = U2ZB + V2

D is determined. The sign of B is a constant for
Cnp and iS s.hnost

three predominant terms of B contain

snd Cyp which in sJ.1practicsl cases
. to the.value of B.

m

invsr~ably positive since the
-—

the derivatives CZP) Cnr> .—
contribute a positive incremeat
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Since t%o values of CZP satisfy the condition R = O for each

value of CnB, the R = O curve has two branches. As pointed out in

reference 24, one of the branches of the R = O curve generally repre-
sents an oscillatory stability boundary and the other branch represents
a line of numerically equal real roots with 02posite signs. (See
fig. 4.) If neither of the values of cl~ which satisfy the expres-

sion R = O for a particular value of Cnp is found to represent a

point of neutral oscillatory stability, the lateral motion has no oscil-
latory mode for that value of “Cnp. If both of the values of Czp

which satisfy the expression R = O are found to represent points df
neutral oscillatory stability, the lateral motion has two oscillatory
modes. In this case, since the boundary D = O represents the line of
infinite period, the branch ofithe R = O boundsry which lies close to
the D = O boundary is usually the boundary for neutral stability of—
the longer period of the two oscillatory modes. A detailed discussion
of the signifzcsace of the stability boundaries and the regions formed
by these boundaries is given in reference 24.

In calculating stability boundaries for a specific airplane a com-
plete solution such as that explained in the preceding paragraphs should
be made. For general studies of stability, however, approximate oscil-
latory stability boundaries may be calculated much more simply by the
methods shown in reference 24.

As pointed out previously, methods of calculating lks of constant
period and damping of the lateral oscillation are presented in refer-
ences 8 and 9.

.
—

d

—
—.

—
—

--i

.

#

Spiral Stability Boundaries

Spiral stability botindaries,like oscillatory stability boundaries,
are usually determined as a function of the directional stability deriva-
tive Cn

P
and the effective dihedral derivative CZ

B
as illustrated in

figure 4. As pointed out in reference 1, neutral spiral stability
occurs when the E coefficient of the characteristic equation is zero
(E =0). A spiral stability boundary can be easily obtained from this
relation. If expressions for E (in terms of

—
Z~) corresponding to

several values of Cn~ have already been obtained in the process of 9

calculating an oscillatory stability boundsxy, the equations formed by
setting these expressions for E equal to zero csm be solved for.the
values of Zp (and hence CZP) corresponding to the assumed values

of Cn . If the values of “E have not already been obtained in the “-
P

process of calculating an oscillatory stability boundary, a spiral.
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.
stability boundary for the level-flight condition (7 = O) can be cal-
culated simply from the equation

c2r
Czp . —cnB

c&

Vslues Of Cn~ sre assumed within the range

(12)

for which the boundary is

required. The values of CZr and C% corresponding to each value of .

Cnp sre then determined. The tail contributions to these derivatives

generally vsxy with Cn
P

since CnP is ususlly assumed to be varied

by changing the size of the verticsl tail.

ESTIMATION OF LATERAL STABILITY

DERIVATIVES

GENERAL REMARKS

Methods of estimating the lateral stability derivatives have been
presented in numerous publications but no single re~ort has contained
information for estimating the contribution of all principsl airplane
components to all the derivatives for airplanes having any sweep angle
or aspect ratio. ti the present paper, en approach to such a presenta-
tion is made by the coordination of and reference to existing estima-
tion methods, by reference to publications containing data which should
be useful in making estimates, and by the suggestion in some cases of
simple new empiricsl formulas. Detailed estimation methods are pre-
sented for low-subsonic-speed conditions but only a brief discussion and
a list of references are given for tramsonic- and supersonic-speed con-
ditions. In genersl, the estimation methods presented should be expected
to yield only fairly accurate values suitable for making first approxi-
mations of dynsmic stability. This limitation applies especially to
the cases in which the derivatives are based completely on theory. .

For convenience, the references that should be useful in estimating
the stability derivatives sre presented in table II. The references
sre grouped according to the speed range covered (subsonic or super-
sonic) and according to the derivatives presented in each re~rt. The
references for the subsonic case (references 1 and 25 to 94) sre further
divided into two groups - one including reports which contain estimation

. methods ad the other including reports which contain exyerimentsl data -
that should be useful in making estimates of derivatives. The

8
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references for the supersonic case (references 95 to 11’j)axe sub-
.

divided according to wing pla form.

The following sections covering the estimation of the nine sta-
.

bility derivatives are divided into three groups according to the type
of derivative - sideslip derivatives

(cYpP Cnpj CZ9), rolling deriva-

(
tives Cnp, Clp, CYp)~ and yawing (

derivatives Cnrj clr~ Cyr). The

derivatives Cyp and Cyr have usually been neglected in making

dynamic lateral stability calculations because theory indicated that for
unswept wings cYp and Cyr were zero. Recent experimental data,

however, have indicated that both swept and unswept wings produce meas-
urable velues of these derivatives (references 25, 59, and 86). Since
the vertical.tail contributes to Cyp and Cyr, it appears desirable

to estimate these derivatives and to use them in the calculations of
stability unless it is established that for “thecase in question the
effects of Gyp and Cyr on stability are negligible. For these two

derivatives, only the effect of the wing and vertical tail need to be
considered.

The methods of estimating the rolling and yawing derivatives pre-
sented herein were obtained from theoretical.treatments based on the
assumption of steady rolling and yawing and from experimental data
obtained principally from tests made under conditions of steady rolling
and yawing. The only information that applies directly to the oscil-
latory case is a limited amount of data on Cnr obtained by oscillation

techniques. When calculations are made in which the oscillatory mode
is the subject of interest, some consideration should be given to cor-
recting the derivatives based on steady rolling or yawing to account
for differences in the derivatives that sre likely to exist as a result”
of differences between the oscillatory motion and the steady rolling
and yawing motion. For example, the data of reference 82 have indi-
cated that, for flap-extended or power-on conditions, fairly large dif-
ferences might exist between the values of the tail contribution to Cnr
for the steady yawing and yawing oscillation cases. At present little
information is available for correcting the values of Cnr for the

steady yawing case to apply to the oscillatory case and, unfortunately,
little or no information is available for correcting the other stability
derivatives.

Since most wind-tunnel force-test data that are likely to be used
in making estimates of the stability derivatives are probably for much
lower Reynolds numbers than those for the full-scale airplene, some
adjustments to the data me usually required to account for the dif-
ferences in Reynolds number. The effects of Reynolds number sh~uld be -

s

considered in the cases of all the derivatives, especially those which
.

.
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sre estimated by methods that involve the
Methods of correcting for Reynolds number

29

use of force-test data.
effects for some of the

derivatives are discussed in the following sections which cover the
estimation procedures. k the cases where the Reynolds nuder effects
sre not discussed, it canbe assumed that any abrupt variation in the
derivatives nesx the stall for low-scale data will also be present for
the @n-scale airplane but ,willprobably occur at a higher lift coef-
ficient because of the higher msximsunlift coefficient of the ai~lane.
An indication of the lift-coefficient range over which the theory may
not be expected to give reliable values of stability derivatives for the
full-scale airplane canbe obtained from lsrge-scale drag data. The
anslysis of reference 86 indicates that the variation of the derivatives –
with lift coefficiefitis different from the theoretical variation at
lift coefficients above that at which the drag due to lift increases
abruptly from the ideal_value c~a~ml.

.... —

The effects of Mach number and power sre not treated in the sections
on the individual derivatives but are discussed.briefly in separate
sections. A detailed treatment of these effects, including design
formulas and charts, was considered beyond the scope of this paper.

THE SIDIISLIPDERIVATIVES cy~, C%, CZP

No satisfactory purely theoretical methods have yet been developed
for obtaining accurate estimates of the sideslip derivatives CyP, Cnp,

snd CZP for a complete airplane, primarily because of lage inter-

ference effects between the various airplsme components and because”of
large, and often unpredictable, variations of the derivatives with angle
of attack. Fortunately, these derivatives can be obtained from conven- ‘
tional wind-tunnel force-test data. Such experimental data are essential
to the accurate determination of sideslip derivatives. It is, of course,
highly desirable to have force-test data for the exact airplane design
under consideration, but reasonably accurate estimates csm ususlly be
made by correcting the force-test data for a generslly similsr design.
The methods of correcting the force-test data on a similar design for
use in the case under consideration sre covered in the following sec-
tions. In the formulas presented, the subscript word “design” is used
to designate the design under consideration and the subscript word “data”
is used to designate the similar design for which force-test data sre
available.

Force-test data should be used to determine the effect on the side-
slip derivatives of such airplane components as leading-edge high-lift
devices, stall-control devices, trailing-edge flaps, nacelles, external
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s

stores, canopies, and dorsal and ventral fins. T>e effect of leadhg-
edge high-lift devices is usually merely to extend to a higher lift
coefficient the same variation of the derivative with lift coefficient .

as for the plain wing. Trailing-edge flaps often have lerge effects on
the contributions of both the wing aud the vertical tail to the sideslip
derivatives (references 39 and 69); and since these effects ue not
easily estimated, it appears that in these cases use of force-test data
is essential. The addition of nacelles and external stores generally
has been found to decrease the directional stab~lity factor C%

slightly. The results of a limited smount of research to determine the
effect on the sideslip derivatives of the size and shape of canopies
has been reported in references ~ and 73 but these results are inade-
quate for making accurate predictions of the effects of canopies. The
effects on the sideslip derivatims of dorsal and ventral fins are
usually small at the small and moderate angles of yaw that are generally
considered in stability calculations. (See references 47 smd 71.)

-.

Cyp
.

:——
In estimates of the lateral force due to sideslip derivative CyP, .

force-test-data for the design under consideration should be used when-
ever possible. If such data are not available, data for a similar
design can be used and corrected as follows:

●

Wing-fuselage.- Since the wing-fuselage contribution to Cyp Is . “ ~

usually relatively small compared with that of the vertical tall, great
accuracy is not required in estimating this’factor. This contribution
may be estimated as follows:

(1) Wing: If the wings of the two designs are generslly similar
the difference in Cypwiu can be considered negligible and no correc-

tion is necessary. The t~eory of reference 25 does not appear to be
suitable for use in estimating Cypting.

(2) Fuselage: If the two fuselages are simllsr in shape, the
difference in Cypfis can probably be estimated satisfactorilyby cor-

recting for the difference in the relative size of the fuselage snd
wing for the two airplanes. It appears, howe~r, from-table X of refer- --
ence 69 unlikely that a reliable prediction of CyPfus can be made

directly from the geometry of the fuselage. Some additional data on

c%fus
me presented in reference 77. Experimental &ta from other *

investigations have shown that differences in fuselage cross-section
can cause very lsrge differences in the variation of %fus with *

angle of attack. For exsmple, in the case of a
major cross-sectional exis horizontal, the sign

flat fuselage with the

‘f %fus
has been’

—



.

.

8

.

NACA TN 240cj 31

found to reverse at moderate and high angles of attack. Force-test
data are essential for making estimates in such cases.

(3)Wing-fuselage interference: For low-wing or high-wing con-
figurations, wing-fuselage interference causes the vslue of CY$ tobe ““””

greater than that obtained by adding the contributions of the wing and
fuselage. (See reference 39.) If the vertical location of the wing on ,_
the fuselage is generally similar for the two designs, however, any
correction for a difference in this interference factor can be neglected.

Vertical tail.- Accurate estimates of CyPtail are necessary

because this factor is used to estimate the tail contribution to several
other derivatives. This factor is especially importsnt at low angles
of attack because in this case the tail contribution is often much
greater than the wing-fuselage contribution to all derivatives except
Clp. For this reason it is highly desirable to have tail-off and tail-
on force-test data for the design under consideration or for a very
similar design. Corrections to the data for a similsx design can be
made as follows:

(1) Correction for differences in wing srea, tail area, and tail
lift-curve slope can be made by the following formula:

‘he‘a~ue‘f C%ail
can be obtained from figures 5

based on the theory of reference 34 and on the theory

--

Sdata

‘design
.(13)

.<

and 6 which are

and data of refer-
ences 28 and 35. ‘The chart of figure 6 can be used to estimite the
change in the effective aspectfratio of the vertical tail caused by the
end-plate effect of the horizontal tail. It should be emphasized that
for the best accuracy the charts in figures 7 and 6 should be used in
conjunction with formula (13) for correcting existing force-test data”
and not for making a direct estimate

(2) In the case of V-tails, the

made as follows:

( ) ( )= cy~v-tail data‘y~V_tail desia

—
of cY~tail.

correction for

—
—

— .

s cy~tail
can be

(%Kc Sv-tail sin2r’
)design s data

(%K
)

N%-tail Sin2rdata
s--design ““”

.. ,

(14)
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.
where the terms ‘%N> I’,and K are the same as given in reference 30

and are defined as follows:

c&N slope of-the tail lift curve in pitch measured in the plane
normal to the chord plane of each tail panel

r dihedral angle of tail surface measured from XY-plane of the
tall to each tail panel, degrees

K ratio of sum of lifts obtained by equal and opposite changes
in angle of attack of two semispans of tail to lifts obtained
by an equal change in angle qf attack for the complete tail

Values of the term K, which are usually about 0.7, can be obtained from
reference 30.

(3) Since large differences in sidewash and dynsmic pressure at
the tail can be caused by differences in wing plan form snd wing loca-
tion, use of experimental data for the specific design or at least for
a design which has a closely similar wing-fuselage combination aud
vertical.tail location is extremely desirable. No methods are available
which permit accurate predictions of sidewash at–the tail, but the
experimental.data of references 39, 49, end 69 can be used to obtain
some indication of the variation in sidewash with vertical location of
an unswept wing on a fuselage and the experimental data of references 36
and 77 provide additional information on sidewash at the tail. Other
experimental.data indicate that the si.dewashfields produced by highly-
swept-jlow-aspect-ratiowings or by fuselages of’fllatcross section can
sometimes be strong enough at high angles of attack to reverse the
effectiveness of a conventionally-locatedvert-icaltail surface. Until
a reliable method is developed for predicting these large sidewash
effects, force-test data appear to be the only means by which satisfac-
tory estimates of cy~tail can be obtained.

Although attempts have been made to develop methods for estimating
the yawing moment We to sideslip (static directional.stability) deriva-
tive Cn~ (for example, references 68 and 69) no reliable method has

yet been obtained. The use of force-test data therefore seems imperative.

.

—

Force-test data for the design under consideration should be used
if available. If such data me not available, use data for a similar
design and correct as explained in the sections to follow.

*

.
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●

wing-fuselage.- The corrections for the wing-fuselage contributions
are: .-.

.-

the v&ZOY~~<~w~~ -
From figure 7 (taken from reference 25)

for the design under consideration ad for

the design for which test data are available can be determined. The
effect of differences in taper ratio can be neglected. (See refer-

d
ences 60 smd 66.) !i%edifference between these values of Cn ~2

should then be added (with proper regsrd for sign) to the experimental
data for the complete model.

(2) Correction for fuselage - The formula

C%us r )()
= -1.3 s~yb ‘O1me ;

can be used to cslculate the CnP. of the fuselage (per

(15)

radian) for the

design under consideration and for the similsx design for which force-
test data tie available. The differences between these two values cfi-”

. then be added (with proper regard for sign) to the force-test data for
the complete model. Formula (15) does not include the effect of ftie-
ness ratio em.dshould not be used for fineness ratios less than 4. This

. formula is sa approximate empirical expression which should not be used
to estimate the value of Cn

Pfus
directly but should only be used as

. indicated to determine a correction for force-test data. This correc-
tion method should not be used in the cases of high angles of attack
when there sre lsrge differences in fuselage configuration. Force-test
data are essential in such cases.

(3) Correction fOr vertical location of the wing - If the designs
are generally similar, the correction for the verticsl location of the
wing on the fuselage cm be neglected. (See reference 39.)

(4) Correction for center-of-gravity ~sition - If the center-of-
gravity position for the design under consideration is appreciably dif-
ferent from that for the design for which force-test data are available,
the value of Cnp for the wing-fuselage combination can be corrected

by multiplying the value of cYp for the wing-fuselage combination by

the distmce between center-of-gravity positions (expressed in wing
spans).

-=:
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Vertical tail.- Corrections ‘0 C%ail ‘or ‘inferences fi
an..,. and tail length Z/b can be made by the following formula:

The contribution of wing-tip fins to c~ is treated

ences 70 and 84.

(16)

in refer-

In estimates of the rolling moment due to sideslip (effective
dihedral) CZB, force-test data for the design under consideration should

be used. If”such data are not available, data for a similar design can
be used and corrected by the methods that follow. .

wing-fuselage.- The corrections for wing-fuselage contributions are:

(1) Correction for wing - From figure 8 (based on reference 25)
the theoretical values of CZ~/CL for the design under consideration

and for the design for which data are available can be determined. The
difference between these two theoretical velues can then be added (with
proper regard for sign) to the experimental data. Consideration should
be given to scale effect, airfoil section, and surface roughness on the
value of Cl~ for highly swept wings. The lift coefficient at which
the experimental vsriation of c~p with lift coe~ficient departs from

theory is greatest at high Reynolds numbers end for..smoothwings with
round leading edges. For wings with rough surfaces or sharp leading
edges the effects of Reynolds number on CZ~ are usually small and low-

scale wind tunnel data cm-be used. For a~”pianes having very smooth
sweptback wings with rounded leading edges, however, some_correction
should be made for scale effect when estimations are made from low-
scale wind-tunnel data. Since no rational method has been developed
for making such corrections it is suggested that,for lift coefficients
higher than that at which the experimental data departs from the theory,
an-average of the theoretical an~ low-scale
Conservative dynamic stability results will
uncorrected theoretical values of CZP sre

are ordinarily greater (more negative) than
the larger negative values of Clp usually
lateral stabiltty.

experi&enta2 values be used;
usually,be obtained if the
used because these values

measured values and because
tend to decrease the dynemic

.

—
.

.

—

.

.
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(2) Correction for wing dihedral - The effect of dihedral on CZp

is treated in references 29, 39, 51, 58, 66, and 79. Cowection for
. the difference in dihedrel between the two designs can be made by

multiplying the incremental geometric dihedrsl angle (in degrees) by
the factor CZpr obtained from figure 9. A plot of CZpr against

aspect ratio for taper z%.tiesof 1.0, 0.5 md 0.25 (obtained from refer-
ences 58 and 66) and a formula from reference x for correcting for
sweep are presented in the upper portion of figure 9. The lower chart
and formula in figure 9 (developed from reference 66) should be used in
addition to the upper chart W formula of figure 9 to estimate the

‘iUes ‘f cz~r
for the case of a wing with partial-span dihedrsl.

Although this chart and formula apply directly only to wings with one
dihedral bresk theyc& be used to estimate the CZPm for wings with

two or more dihedral breaks by the method described in reference 66.
The effect of drooped wing tips and of wing-tip end-plates on %tiw

should be determined by experimental data since no reliable estimation
procedure for these effects is available.

(3) Correction for wing-fuselage interference - Although the con- “
tribution of the fuselage alone to Czp is usually negligible, the

interference between the wing smd fuselage can greatly alter the value
of Czp ~f the wing. This interference is such that a high lacation

of the wing on the fuselage gives more positive effective dihedral
(higher -CZ~) and a low wing location gives less positive dihedral
tha a midwing position. This effect is treated theoretically in
reference 67 and has been studied experimentally in references 38 to “42.
The following simplified expression for estimating the increment in Cz$
caused by wing-fuselage interference has been developed from the rela-
tionships presented in reference 67 and in other sources:

(17)

This expression has been found to give reasonably good agreement with
experimental data for a variety of configurations. It is suggested
that vslues of LCZP be calculated from this equation for both the

design under consideration and for the design for which force-test data
are available. The difference between these values csm thenbe added
(with the proper regsrd for sign) to the force-test data.

Vertical tail.- The value of cz~tafl determined from force-test

data on’s similsr design can be corrected as follows to obtain CZPtail s
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for the design under consideration:

()cZ%ail design = FIPtailjdata -

The results of reference 35 indicate that Clp can also
t.il

(1!3)

be affected —

by the location of the horizontal tail with respect to the vertical
tail. If the two designs have approximately the same horizontal tail
size and location, homver~ this effect can be neglected.

The value of CZPtafl for

following empirical formula:

a V-tail can be estimated from the

P
CyBv-ts,il(%-tail + ‘zV-tail ‘in de~i

‘ 1

.

( ) ( )

b sin
= cZ@V-tail dataClfiV-taildesign

[ ,(

cyBV-tail
b sin ilbv-tail+bv-tail ‘in r data .

.
(19)

where bv-tai~ is the developed (not pro~ected) span of the V-tail,
,

ZV-tai~ is the vertical distance from the center of gravity to the
chord of the V-tail (positive up, smd r is the dihedral.angle of

the V-tail. More information on V-tails csn be found in references 30,
61, snd62.

In the case of a vertical tail located on the wing, there is, in
addition to the increment~ CZp produced by the tail lateral force,

reduced by the interference effect of the verticalan incrementsJ- Czp P

tail on the wing. Since this interference effect varies greatly with
spanwise and vertical position of the tail, it should be determined
from force tests. Usually the kverference is such that a vertical tail
above the wing gives a negative .ncrement of CzP (positive effective

dihedral) and one below the wing gives a positive increment of Czp.

In general, the largest interference effects are obtained with vertical
tails at or nesr the wing tips.

.

.
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.

Cnp

.

.

The wing md vertical tail are the only airplane components that
contribute appreciably to the yawing moment due to rolling derivative
Cnp. The contributions of the fuselage and horizontal tail can ustially

be neglected.

~. - The contribution of the wing to Cnp can be estimated from

the formula and charts of figure 10 which were taken from reference 86.
Uthough these charts apply strictly only to wings having a taper ratio
of 1.0, experimental data have iqdicated that they will slso provide
fair>y good estimates for taper ratios of O.~, 0.25 and O. In the
estimation formula .———

(20)

the value of
()CDO a should be determined, if possible, from force-test

.
data obtained at high Reynolds number on the wing under consideration,
since low Reynolds number data might indicate values of

()
CDO a that are

m too large. For the case of smooth wings with a large leading edge
radius and low or moderate sweep, it is suggested that

()
CDO a for the

airplane be assumed to be zero at cdl llft coefficients up to the stall.
This assumption will result in larger negative vslues of Cnp thlul

would be estimated from low Reynolds number data on
()CDO a and con-

sequently should lead to conservative dynamic stability results since
an increase h C~ in the negative direction has been fetid to cause

a reduction in dynsmic stability.
()

The vslue of CDO a for hi~ly swept

wings is often very lsrge at high lift coefficients, especially for
wings with rough surfaces, sherp leading edges, or trisagular plan form.
For these cases, values of

()CDO ~ determined even from low Reynolds

number data might lead to r~asohbly good estimates of Cnp. b all

these cases, however, high-scale drag data should be used whenever-it -
is available.

Effect of hi@-lift devices.- The principal effect of leading-edge
high-lift devices is to extend to a higher lift coefficient the lineer
variation of Cnp with lift coeffic~ent. The formula and chsrts of

figure 10 are directly applicable to this case. The effect of
___
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trailing-edge high-lift devices is not so straightforward,but experi-
mental data have indicated that the formula snd charts of figure 10
also give reasonably good estimates in this case.

Vertical tail.- The contribution of an isolated vertical tail
surface to Cnp can be estimated by the following approximate formla

which has also been commonly used to estimate CnPtail
of a ccmplete

airplane:

The values of cy~tail should be

previously discussed. Instead of
will usually be better to use the

as determined by force-test data.

C=%tail=

(21)

determined from force-test data as

the geometric tail length Z/b, it
effective tail length -Cn

‘tailI
Cy

Ptfi~

Formula (21) then becomes

()z Cnp2b tail
(21a)

In the case of the conventionally
ever, the rolling wing produces a
alters the tail contribution to CA. This sidewash causes the values

located &rtical tail surface, how-
sidewash at the tail which greatly

Ol? CnPt~i~
to be much more negati~e than is indicated by formula (21).

This effect is discussed more fully in reference 36 in which is also
presented a method for estimating the sidewash. Some preliminary theo-
retical.studies have indicated that the effect of the sidewash on
Cn
Ptail

varies considerably with tail size and tail location and to

some extent with wing plan form. A comprehensive experimental verifi-
cation of this theory is planned but as yet only a few scattered checks
have been obtained. For the case of the conventionally located verticel
tail surface, the
of c~tail that

following formula has been found to give estimates
are in fairly good agreement with experimental data:

or

(22)

(22a)

.

.

-.
●

.
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This formula is based on tQe assumption that
Cnptail

is zero at 0° angle ‘-

of attack and vsries.with s@_e of attack in the same mamner as indicated
. by formula (21). Formula (22) or,the method of reference 36 can be used

satisfactorily for first approximations of Cn for most configura-
Rail

tions with conventionally located vertical tails. For more accurate
estimates, especially for configurations having an unusuel tail size or
tail location, experimental data should be used.

For wings of triangular plan form with vertical tails either
directly above or above end slightly behind the wing, experimental data
have indicated that neither formula (21) nor formula (22) gives sn
accurate estimate of Cn

‘tail
but that m average of the values obtained

by the two formulas provides a fairly good estimate. .

It is obvious that these methods of estimating Cnp are ofiY ..

approximate and sre open to question in many cases. Experimental snd
● theoretical studies sre currently being made to provide Better methods

of estimating Cnptail and,when these methods become available, the

. approximate methods presented herein should be discarded. At the present “
time, however, formula (22) and reference 36 will usually Provide much
more-accurate-estimates“of” CnPtail than formula (21)

.
in common use up until this time.

m
Czp

Wing-fuselage.- Most of the rolling moment due to
in-roll derivatin) CZP of sn airplsm.eis produced by

&i~h has”been

rolling (demping-
the wing. The

effect of the fuselage-can be neglected unless the ratio of the diameter
of the fuselage to the wing span is relatively lsrge (greater than
about 0.3). For large vslues of this ratio, the vslue of CZP will be

smaller than that for the wing alone by sn mount that can be estimated ‘“-”
from a consideration of the area and lateral center of pressure of the
w&gl~~ included within the fuselage. (See references 103, 108,

. ...—

w“ - The dsmping in roll of wings has been the subject of many
experimental and theoretical investigations. (See references on clp
in table II.’) As a result, some methods of estimating Clp have been

developed which have been found to give reasonably good agreement with
experimental results. The method presented in reference 79 apye”arsta.
give stificiently”accurate estimates of c2P for zero lift. This

.—
.
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.
method is extended in reference 89 to permit the estimation of Czp
over the normal flight range of lift coefficient. Estimation charts
and formulas from reference 89 are presented in figure 11. .

-.

High-lift devices.- Expertiental data have indicated that the
damp@ in roll of wings at low and moderate lift coefficients Is not
greatly sffected by the addition of high-lift devices such as trailing-
edge flaps, leading-edge flaps, slats, and slots. The principal effect
of such devices is to increase the lift coefficient at which the sharp
decrease in CZP uccurs. The cherts and formulas of figure 11 csn be

used ta estimate the CZP of wings with either full-span or partlal-

span high-lift devices with fair accuracy despite the fact that the
method is not strictly applicable to pertial-span high-lift devices.
(See reference 89.)

Wing-tip fuel tanks.- The use of wing-tip fuel tanks usually
increases the damping in roll of the wing. The expertiental data of
reference 91 fon unswept wings indicate that the magnitude of the
increase varies with angle of attack and depeqds upon the wing taper
ratio and on the si”zeand locatfon of the tanks. Unpublished experi-

mental data indicate similar effects of wing-tip tauks on sweptback
wings. The following approximate formula for estimating the increment
in CZP produced by wing-tip ”tankbat low lift coefficients is based

on the limited amount of available experimental dat~ and should not be
expected to yield very close quantitative estimates:

,

●

()ACZ ()
= c1

(

Msximum tank diameter
P t-s P t~~ off wing span )

(KT) (23)

where, for symmetricallymounted tip tanks,
-—

for tanks mounted below the wing tip or forward on the wing tip,

%=3

and for pylon-mounted tip tanks,

Experimental data for both unswept and swept wings indicate that

(~zP)tanks
usually becomes.smaller with increasing angle of attack

and, in some cases, actuslly reverses sign at high angles of attack so
*

that the tanks are decreasing rather than increasing the damping in roll.
.
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The data of reference 91 can be used to obtain an approximate estimate
of the effect of singleof attack for unswept wings.

.
Tail surfaces.- The contribution TO cZp of conventional type

horizontal and vertical tail surfaces is usually very small and, in
most cases, negligible. When an airplsne rolls, the wing produces a
rotation of flow at the tail surfaces which reduces the already small
damping moments of the isolated surfaces, except in the case of the
vertical tail at high angles of attack where the tail center of pressure
is below the center of gravity.

The contribution of an extremely lsrge horizontal tail to CZP

might not be negligible and c- be estimated by multiplying the”value
of cl for the particular tail plan form obta

P
formulas of figure l-lby the factor

~t ~t &d ‘r~ the charts ~d

()
0.5 y~ in which the fat-

tor 0.5 is included to account for the rotation of flow produced by the
-.

The contribution of an isolated vertical tail surface to Czp is

given by the following approximate f.ormsila:

c‘ptail
=

()z 2 %tail2G (24)

As in the case of cnPtail this formula can be modified to provide an

approximate correction for the effect of the wing on the damping in
roll of conventionally located vertical tail surfaces:

(25)

An anslysis of this expression indicates that the value of CZ
Ptail

is

negligible at low -d moderate angles of attack where z/b is positiye
but that it might be fairly importsmt at very high sa.glesof attack
where z/b is a lsrge negative value. As in the case of Cnp, experi-

mental data indicate that,for a vertical tail loc~ted either directly
above or slightly behind a wing of triangular plsn form, the value of

c‘Wail
can be estimated with better accuracy by an average of

formulas (24) and’(25) than by formula (25) slone. For conventional
tail arrangements, however, formula 25 gives better correlation with
experimental data.
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Wing.- The following formula for the derivative Cyp (lateral

force due to rolling) from reference 86 is based on experimental data
and is the sane as that presented in reference 25 except for an addi-
tional correction to account for tip suction:

!$= A+COSA
Ai-

AtsnA+~
Cos

(26)

The data of reference 86 show that this formula applies only for lift

CL2
coefficients below that at which the drag factor CD - ~ begins to

increase. At higher lift coefficients the experimental data indicate
smaller values of Cyp than given by formula (26). For these cases an

approximation of the value of cYp can be obtained from the experi- .

mental data of reference 86. As in the case of Cnp, the break in the

variation of Cyp with lift coefficient should be expected to occur ~..

at lower lift coefficients for wings having shsrp leading edges or
rough surfaces and for wings tested at low Reynolds numbers. .

Vertical tail.- The discussion concerning
Cn%ail ‘d cZX’tail

is also applicable to cyPtall”
The value of Cy for m isolated t

Ptail

.-

tail-surface is given by the formula:

Cyptail ()= 2 g cYptail

This formula cm be modified as follows to account approximately
effects of wing sidewash in the case of a conventionally located
tail:

An average of formulas (27) and (28) can be used for tail~ located
either ‘directlyabove or above and slightly behind the wing.

(27)

for the
vertical

(28)
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THE YAWING DERIVATIVES Cnr, CZr, AND CYr

Cnr

Wing-fuselage.- In the past, the contribution of the wing-fuselage
combination to yawing moment due to yawing (demping in yaw) derivative
Cnr has usually been found to be small compared to the contribution of

the vertical tail. The fuselage contribution to the dsmping in yaw
depends, of course, on the relative size of the fuselage and wing. In
the past, the relative size of these components has generally been such
that the fuselage contribution could be neglected. (See references 82
and 83.) For some recent desi~s which have a large itiselagerelative
to the wing, however, the fuselage contribution to Cnr is important.

In the case af fuselages having flat sides or having a flattened cross
section with the major axis vertical the fuselage contribution may also
be important and some fuselage contribution to Chlr should be assumed,

especially at high angles of attack. On the other hand, experimental
data have shown that a flattened cross-section fuselage with the major

-.

axis horizontal can have negative damping in yaw at moderate and high
angles of attack.

The contribution of the wing to Cnr can be estimated from the
formula and charts of figure 12 which were taken from reference 25.
Values of CDO for the wing should be estimated from force-test ,data.

For values of =/F greatly different from zero, the charts of refer-”-
ence 25 can be used. The formula and charts of figure 12 are not con-
sidered reliable at high angles of attack, especially for swept wings. 4
The use of experimental.data from the references-on Cnr listed h

table II is recommended in this case.

The effect of partisl-span iriboardflaps on &r can usually be

neglected. (See reference 82.) The effect of full-span trailing-edge
or leading-edge high-lift devices can be estimated satisfactorily from
the formula iandcharts of figure 12. Values of CDO in this case are,

of course, for the wing with the high-lift device installed. .

tail
Vertical tail.-
to c% canbe

The contribution of a conventional-t= vertical
estimated from the formula.

(29)
.

8



44

.
—

NACA TN 2409 .

or,

the

The

with the effective tail length “%tall /Cyf%ail
substituted for

geometric tail length Z/b,

experimental,vslues

(& .Jp!.z#
tail

for Cnrtail presented

.
——

.

(29a)

in reference 82 for

power-on or flap-down configurations sre 30 to @ uercent ~eater than
&lues predicte~ by formula= (29) or (29a~. These-differences are
attributed to lag of sidewash effects in the free-oscillation tests
used in measuring Cnr. for stability cal-In estimations Of Cnrtail

culations, similsr lag of sidewash effects should be assumed if the
oscillatory nmde is of primery Importance but no lag of sidewash should
be assumed if the aperiodic mode is most important. m

Methods for estimating the Cnrtail
for wing-tip vert~cal tails

are presented in references 70 and 82. .

.

The wing and verticsl tail s.rethe only airplane components that
contribute appreciably to rolling-moment-due-to-yawingderivative

P
Ctr

of an airplane. The contributions of the fuselage and horizontal tail
can usually be neglected. A semiempiricalmethod for estimating CZr

is presented in reference 85. This method involves the use of e~eri-
mental data on the parsmeter c2p to correct the theoretical.velues of

cZrwiq given in reference 25 and to estimate the value of CZr~w’

wing.- The formula of reference 85 and the chsrts of Czr CL from
I

reference 25 for estimating Cl
rwing

are given in figure 13. The

values of Cz
I~ CL to be used in the charts can be obtained from fig-

ure 8. For taper ratios less than 0.25, values of CZr CL and CZP CL
/ I

for a taper ratio of 0.25 can be used. The value of CZfiea used in

the formula should be the ssme as the value of Cz
$Wing

estimated from

experimental data by the method indicated in the section on CZP. In

the case of Ctr, however, (unlike the case of CZP) conservative
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dynsmic stability results will.ususlly be obtained if the smaller
of the derivative (based on low-scale experimental data) are Used
instead of the lsrger (theoretical)values. This difference is a

45

values

resuit
of the fact that e~ther an increase in the normally negative value of
Cz$ or a decrease in the normslly positive value of c2~ csm cause

reduction in dynsmic stability. As pointed out in reference 85 the
estimation procedure shown in figure 13 appears to account satisfactorily
for the effects of high-lift devices, wing, dihedrsl, and airfoil section.

Vertical tail.- The contribution of the verticsl tail to CZr is

usually estimated by the formula

(30)

where Mptau is preferably obtained from force-test data. When

experimental data on
C%ail

are available, the following formuIa f%om

reference 85 can be used and will probably be more reliable thsn equa-
tion (30) because it takes into account sny interference effects that
might cause the effective vertical location of the center of pressure of
the tail to be different from the location determitid by geometrical .—
procedures:

.

.

or with the effective

geometric tail length

—

Cz%ail (}=-2$ ‘Ptail
(31)

tail iength
I‘cn~tail ‘~tail substituted for the

Z/b,

()C%tail ~ z
cl =2
‘tail ‘%ail, Btail

..

.

(Sla)

Cyr

Wing.- The theory of
Cyr (lateral force due to

reference 25 gives values of the derivative
yawing) for the wing for a taper ratio of 1.o.

The experimental data of references 25 and 59 indicate that this theory
is inadequate for making reliable estimates of cYrw@ . It is recoin-

mended therefore that the experimental data given in references 25, 58,
59, and 60 be used in making estimates of cYrw@ ~

—.
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Vertical tail.- The value Of- CYrtail csn be estimated by the

formula

or

is

by the formula in which the effective tail length
I‘cn~tail Q%ll

substituted for the geometric tail length Z/b:

‘rtail = ‘%tail (32a)

The discussion of lag-of-sidewash effects for Cnr apply also ,to
tail

Cyrtail”
.

.

.

EFFECTS OF MACH NUMBER .

The effects of Mach number on the lateral stability derivatives
have been treated theoretically in many investigations (see table II)
but very little experimental data have been obtained to verify this
theoretical work. Moreover, only a small part of this e~erimental
work has been covered in published reports (reference 111) because most
of it is classified at the present time. It appears, therefore, that
estimates of the lateral-stability derivatives for the time being will
have to be based largely on theoretical work.

The effects of Mach number on the stability derivatives can be
usually considered negligible for all airplane components except the
wing and vertical tail. For the low-lift-coefficientcondition in the
case of many high-speed airplanes, the verticsl tail contributes more
than the wing to all the stability derivatives except Czp. For this

reason, in calculations for transonic or supersonic speed conditions it
is especially important to know the effects of Mach number on the
vertical-tail lift-curve slope or ~~tail “

q. - The effects of compressibility on the subsonic stability
derivatives of the wing can be estimated by the formulas of reference 26.
The values of the supersonic stability derivatives for some wing plan
forms can be estimated by the references tabulated in table II. In this
table the derivatives are grouped according to the type of wing plan
form and to the particular derivatives covered. A helpful summary and
discussion of the effects of Mach number on the derivatives for several
different wing plan forms is presented in reference 103. A summary of
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the theoretical lift-curve slope, dsmping in roll, and center-of-
pressure characteristics of vsrious wing plan forms is presented in
reference 107. ti the cases in which the theory shows large or abrupt
changes in a stability derivative with changes in Mach number (for
exsmple, fig. 10 of reference 103) specisl care should be taken in
estimating the derivative in that particular Mach number rsmge. The
abrupt changes should be smoothed or faired out in a msnner similar to
that suggested in the following section for estimating CY~tail.

In some cases, experimental data for supersonic speeds will be
available on the sideslip derivatives and on the dsmping-in-roll deriva-
tive CZP. In such cases the experimental data should be used in pref-
erence to the theory. Some experimental results have indicated that the
effect of the vertical location of the wing on the fuselage on the
derivative CZP might be greatly different at supersonic speeds from

that at subsonic speeds. Since no methods are presently available for
estimating this effect for the supersonic case, it appesrs that, at
least in the case of high-wing and low-wing designs, force-test data
sre necesssry for obtaining a accurate estimate of c@.

..

Vertical tail.- The sideslip derivatives produced by the vertical
tail at transonic and supersonic speeds san be estimated theoretically
but should be obtained from”force-test data whenever possible. These
sideslip derivatives can be used to estimate the tail contributions to
the other derivatives as pointed out previously.

.

~ estimates of the
v-due of ‘Btail for transonic and supersonic speeds, corrections must

be made for the effect of Mach number on the lift-curve slope of the
tail, and these corrections should account for any differences in the
end-plate effect of the horizontal tail on the vertical tail.

For Mach numbers below about 0.8 or 0.9 and above about 1.6 or 1.8
the effect of Mach number on the lift-curve slope of the vertical tail
can be estimated satisfactorily from the theoretical values of refer-
ences 26, 34, and 107. Since experimental data indicate that theoreti- ‘
cal values of lift-curve slope sxe usually too high for Mach numbers
from about 0.8 or 0.9 to about 1.6 or 1.8, the empirically determined
fairings shown in figure 14 sre recommended for use as a guide in the
use of the theory to obtain approximate estimates in this Mach number”
range when force-test data are not avilable.

--.—

Experimental data have indicated that for vertical-tail configura-
tions which have a tail length (distance from the center of gravity to
the tail center of pressure) that is relatively short in terms of tail
chords, the resrward shift of the tail center of pressure at supersonic
speeds can cause an appreciable increase in the tail length and
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consequently an appreciable increase in the magnitude of some of the
tail derivatives, Theoretical center-of-pressurepositions for various
plan forms at supersonic speeds are given in reference 107.

.

EFFECTS OF POWER

On the basis of existing information, the effects of power on the
lateral stability derivatives appear to be negligible in the case of
jet-propelled airplanes but these effects are often very lsrge in the
case of single-engine propeller-driven airplanes. Methods are available
for estimating some of these power effects but in most cases experimental

-.

data are necessary for making a satisfactory estimate. The effects of
power can be broken down into two general classes:

(1) The effects of
itself

(2) The effects of
and vertical

the lateral force produced by the propeller

.

the propeller slipstream on the wing, fuselage,
tail of the airplane ,

Effects o@r opener lateral force.- A method of estimating the
propeller-lateral-forcederivative Cyp is presented in reference 31 u

which is based on the work of references 32 and 33. The contribution
of the propeller lateral force to the other stability derivatives can
be estimated from this derivative by ass~ng that the propeller is #

effectively a vertical tail surface and by using the expressions for
the tail contribution to the various derivatives presented in the
preceding sections. Some experimental data on tx effect of wini!milling
propeller on all of the derivatives are presented in reference 65.

Effects of propeller slipstream.- The effects of pro~eller slip-
stream on the lateral-stability derivatives are usually much greater
then the effects of propeller lateral force in the case of single-engine
tractor airplanes. The slipstream effects on the wing, the fuselage,
and the vertical tail can be considered as three independent effects,

The slipstream effects on the wing can usually be neglected except
for the derivatives CZP and Clr. Experimental data showing the

decrease in effective dihedral
()
-clB with power for single-engine air-

planes are presented in referen~es 54, 55, 56, 74, and 80. It apgears
highly desirable to determine this effect of power experimentally
because interference effects make accurate--e~timatiouof the effect ““ ““-
very difficult. The effect of the slipstream on the value of

cannot be estimated from the data on Czpwing as described in
c2%ing

●

the
F
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section on Clr. h fact, this procedure would

sign for the increment of c&ti% contributed

probably give the wrong

by the slipstream. An .

approximation of this increment might be obtained by estimating the slip-
stream velocity snd the lateral displacement of the slipstream caused
by yawing. Usually the power effects on

c‘~wing
smd Czr will be

wing
greatest for the flap-extended configuration.

In the case of the single-engine airplane the effect of the slip-
stream on the fuselage is usually to increase negatively the values
Of Cnp d.nd cy~. (See references 54, 55, 56, m, 74, and 76.) Since
no accurate methods of estimating these slipstream effects on Cnp .—_

and CyP sre available, it is necessary to determine them from force- .-.

test data.

The effects of the slipstream on the vertical tail sre often very
important and should slso be determined from experimental data, if
pssible. The increase in dynsmic pressure at the tail caused by the
slipstream is treated theoretically in reference 116 and is illustrated
by the experimental data of references 50, 54, 55, 56, 71, 74, and 76.
The experimental data of reference 76 also show that the propeller slip-
stream can cause a destabilizing sidewasp at the tail which will tend
to reduce the stabilizing effect of the increased dynamic pressure at
the tail. Since these data indicate that slipstream effects on the
vertical tail vary greatly with airplane configuration and propeller
arrangement (single or dual rotation), use of experimental data appears
to be the only satisfactory estimation procedure at present.

Suggested estimation procedure for power effects.- The following
procedure is suggested for estimating potiereffects. Obtain force-
test

Cnp,

tive

data for tail off and tail on.
—-
Use tail-on data directly for cY&

and’ Cl$. Estimate rolling and yawing derivatives as follows:

(1) Estimate ~Ppropeller from reference 31 and use this deriva- .
and proper linear dimensions to estimate other propeller deriva-

tives (rolling and yawing derivatives) in the same manner as tail
derivatives.

(2) Subtract tail-on data from tail-off data to get vslues of

cyBtail’ cn~tail’ * Czptail for the power-on condition and use

these values to estimate the tail contribution to the other derivatims.

(3) For tafl-off values of rolling and yawing derivatives, use
sane vslues as for power-off for all derivatives except

..
Czr. Estimate

Clr as suggested in preceding section.

.
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(4) Add the values obtained in steps 1, 2, and 3 to get the
.

rolling and yawing derivatives for the complete ah@.ane.
.

INADEQUACIES IN PRESENT INFORMATION AND METHODS

In the course of summarizing the estimation methods for the various
stability derivatives, the need for much additional information on all
the derivatives became apparent. In particular, information is needed
to aid in the estimation of the derivatives in the transonic and super-
sonic speed ranges. Additional work also needs to be done in correlating
ad analyzing existing subsonic data and in obtaining new experimental
data for the development of semiempiricalmethods of estimating the sub-
sonic derivatives without resort to force-test data. Another important
need is for full-scale experimental results at all speeds for checking
both low-scale data end the existing methods of estimating derivatives.
Details of the need for additional work along these lines are discussed
in the following sections. Studies should also be made to determine
the conditions for which the use of steady-state stability derivatives
in conventional stability equations is inadequate and to determine
satisfactorymethods of treating such conditions.

l?ransoni.cad Supersonic Speeds

.Addition&1 theoretical work is needed on the estimation of sta-
bility derivatives in the trsmsonic and supersonic speed ranges to
cover the r-e of wing plan forms for alJ the derivative.e. In particu-
lar, more work is needed on plan forms currently under consideration,
such as wings having moderate sweepback ad taper. This need 1$ illus-
trated by table 11 which indicates that very little material is available
on the stability derivatives for such plan forms except, perhaps, for
the derivative CZ$. It appears from the table that this derivative ,.

and the triangular plan form have, in the ~ast, received a dispropor-
tionate share of attention, probably because of the greater ease with
which they could be treated theoretically.

The greatest need for work on stability derivatives at the present-
-.—

time is probably in the measurement of the derivatives at transonic and
supersonic speeds. Experimental data on wings are urgently needed for
checking the theoretical work and for use in the development of empirical
corrections to the theory wherever necessary. Such corrections are
particularly needed for fairing out abrupt variations of,the derivatives
with Mach number and for fairing through the Mach number range for which
theory predicts infinite values. Examples of such discontinuities as .?
indicated by theory are shown in figures 8 to 13 of reference 103.

.
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. Since experimental data obtained at supersonic speeds on wing-fuselage
combinations sad on complete models have revealed interference effects
that are different from those obtained at subsonic speeds, it app-ears

●

highly desirable to obtain at least a limited amount of experimental
data at transonic and supersonic speeds to evaluate these interference
effects. For example, investigations should be undertaken to determine
the

the
the

and

effect of wing~fu&lage in~erference on the derivative Clp and

end-plate effect of the horizontal tail on the lift-curve slope of
verticsl tail.

Most of the experimental data on stability derivatives at transonic
supersonic speeds will of necessity be obtained at Reynolds nunhers

considerably less thsn full-scsle values and under test conditions which
might render the results open to question in some cases. Full-scale
checks in flight of the low-scale data and of the estimation methods
therefore appesr to be desirable. Consequently the methods of measuding
stability derivatives in flight now being developed by the Cornell
Aeronautical Laboratory, the Massachusetts Institute of Technology, and
the NACA should be extended to trsmsonic and supersonic speeds when the
methods appesr to be developed to a satisfactory degree of reliability

-..

for the subsonic case. Some preliminary considerations involved in the
use of these flight techniques sre discussed in references 117 to 120.

Subsonic Speeds

The methods presented in this paper for estimating the gtability
derivatives at subsonic speeds depend either dfiectly or indirectly on
the use of force-test data. These methods are probably more reliable
than methods which do not involve the use of force-test data on the
particular design under consideration or on a similar desi~. Methods
which do not rely on such data sre desirable in some cases, however,
because the necessary data will not always be available. --

In the case of sideslip derivatives, empirical methods can probably
be developed lsrgely from existing information. In some cases it will
be necesssry to augment the existing information with new results since
much of the available force-test data were not obtained in a manner that
would make the data readily usable for developing general estimation
procedures.

.
In the case of rolling and yawing derivatives, considerably less

information is available than in the case of the sideslip derivatives.
Most of the information now available was obtained in the Langley .—_

stability tunnel, principally on wing configurations and to .a_limited
extent on complete airplane models and airplane components other th=”’
the wing. Considerably more work is required, especially for components



*

in combination, before satisfactorymethods can be developed for
.

estimating rolling and yawing derivatives without the use of force-test
data on the particular design under consideration or on a stiilar design. *

In discussing the work necessary for developing new procedures for
estimating the stability derivatives without the use of force-test data

.--

on the design under consideration or on a similar design, it Is useful.
to break the problem down into two parts: (1) effect of individual
components and (2) the effect of interference of the components on each
other.

The principal components to be considered sre the fuselage, wing,
—

vertical tail, and propeller. For the isolated fuselage, the main
problem is the development of methods for the estimation of Cn end

P
then, perhaps, of Cnr ad CyP. For the isolated wing, the main

problem is to estimate the derivatives at lift coefficients above that
at which separation begins. Such estimations can be made with reasonable
accuracy for some of the derivatives by existing methods which make use
of force-test data, but the development of methods which do not involve .

*

the use of force-test data will probably be V&”@ difficult. For the
isolated vertical tail, the problem is to establish the effective tail

.
b

srea and aspect ratio from the geometry of the tail so that-the lift-

(
curve slope or CyP) of the tail can be calculated.

..=
Solutions to this

seemingly simple problem have in the past become involved with interfer- - ●

ence effects so that, as yet, no reliable methods have been published
for estimating CY~ of the vertical tail from its geometry. For the

isolated propellers, the work that is needed at present is a systematic
s

check of existing methods of estimating the lateral force on the
propeller to determine the accuracy of these methods.

The principal interference effects to be considered are mutual
interference of the wing and fuselage; wing-fuselage interference on
the vertical tail; horizontal-tail interference on the vertical tail;
propeller-slipstream interference on the wing, fuselage, and vertical
tail. The mutual-interferenceeffects of the wing and fuselage are
probably important only for the derivatives CZP, C

..
np) and Clr. A

large smount of--experimentaldata is available for the sideslip deriva-
tivesbut no procedures for estimating the interference effects on these
derivatives have been reported. Wing-fuselage interference has very
important effects on cYp of the vertical tail, and consequently on all

of the stability derivatives for some flight conditions. These effects
result from the sidewash and change in dynsadc pressure at the tail
which may result from si.deslipping,rolling, or yawing. Although con-
siderable data which show these interference effects a>e available, 8
particularly for the case of sideslipping,no reliable methods exist



.
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for estimating the interference effects. Horizontal-tall interference
also has an important effect on cYp of the vertical tail for s6me

horizontal-tail positions. Some work on a limited number of configura-
tions has been done toward developing methods of esttiating this effect
but data are required on more configurations before the generally appli-
cable methods can be evolved. The propeller slipstream can cause imp3r-
tant effects on CZP and CZr of the wing, on Cw aud CyP of the

fuselage, ad on QB of the tail (and consequently on the tail contri-
bution to all the derivatives). Some data are available for the effect
of the slipstream on the sideslip derivatives but, because of the com-
plexity of this problem, considerable additional data may be required
before a satisfactory method of estimating the slipstream effects can
be developed.

As mentioned in the preceding section, full-scale checks of low-
scale data and of the estimation methods are desirable. For the sub-
sonic case some of the checks can be obtained from lsrge-scale wind-
tunnel tests but some checks in full-scale flight tests should also be

.—

obt-fned when the various methods of measuring stability derivatives in
flit.,nthave been developed to a satisfactory degree of accuracy.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics

Langley Field, Vs., December 13, 1950

.
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APPENDIX A

.

EQUATIONS OF MOTION

The

are

hY ~
‘&dt -

dimensional equations for the lateral motions of an airplane

—

%~-L’=o (Al)
.—

%’ -Nc=o (A2)

.

.

(A3)
*

If equations (Al) and (A2) are divided by &Sb and equation (A3) is

divided by &S the equations of motion may be expressed in the con- .

ventional nondtiensional form in which they have generally been presented
g

in NACA reports (for example, see reference 2): *

(Ak)

.

.
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.
In order to convert these equations into a form which will reduce the .
number of arithmetical and algebraic steps in performing stability caJ--

. cfitions, equations (A4) are multi@ied bY m/pSb @ ‘itten ‘n ‘he
following form:

y - z@)@+ (K@2 - Z+)*- z,, - Zc =0 -

[K@2 - ~D)@ + ~ - ~D)V -“npP - n= = O
1

(A5)

where

1
‘P

.—cz
4KX2 p

1Zr=— cZr
4KX2

Zc = + Cz
2KX c

t
LTT=—

,

..—
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.

APPLICATION OF THE LAPLACE

APPENDU B

TRANSFORMATION TO CALCULATING MOTIONS
.

The application of the Laplace transformation to the calculation
of the latersl motions of airplanes is presented in order to illustrate
the development of the equations of motion in the form in which they
are presented in the present paper. This work is similar to th@~e-
sented in references ~ and 6. In fact, it–follows the presentation in

—

reference 5 very closely. Reference 6 presents a brief explanation of
the Laplace transformation and its application to solution of the equa-
tions of motion of an airplane. This paper also makes reference to
detailed explanations of the Laplace transformation. In cases where
modification of the equations presented in the present paper are neces-
sary, reference should be made to these texts for an understanding of
the mathematics involved. Applying the Laplace transforms

L(1) =*
.

. . . . . b

and multiplying
from appendix A

(
&3 -

)2PA2 @h +

(
K2A3 - n@2) #k

each of the equations by X transforms equations (A5)
to .—-

I (Bl)
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Solving equations (Bl) by determiuts gives

I -Znh ~3 - z..k2” K,A3 - Z-L2

similarly, the

fl~=
S& + alkb + a@3 + a3L2 + .a4L+ a5

X2 A.X4+BL3+C’X2+DA+ E )

expressions for ~X and ~k sxe

boX5 + b@.k + b2A.3+ b3X.2+ b4A + b5

X2(AA4 + BA3 +CA2+DA,+E

COL4 + C1L3 + C2A2 + C3X + C4
PA =

(
AAA4+BL3+CX2+DA+E

)

where the expressions for the coefficients in equations (B2)

7)X

(B2) ‘-

—.

(B3)

(B4)

to (B4) are
given in terms of the mass and aerodynamic stability derivatives by
equations (1) to (4) in the main body of this paper. —

In order to obtain the actusl vsxiables from the transformed
vsriables, an inverse Laplace transformation must be applied. The
expressions for @h, Vh, and pi are of the form UA Vk where UL

/
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and VA are

of Uh. The

In this

NACA TN 24o9

polynomials, the de~ee of VA being higher than that

inverse transform of a function of this type is

(B5)

equation all of the roots X of VA = O are assumed to be

.

distinct. This assumption is valid for PA; but for tik ~d *A,
~=Oha s two zero roots. (See equations (B2), (B3), and (B4).) me
terms in the equations for @ and ~ resulting from the two”zero roots
axe

*(O) + 0(0)0 (B6)
●

where

UA ~2 ,-
Q =—

VA

The inverse transfomns of @x, *X, and j3k are from equations (B5) 8

and (B6)
.

@ = Ale‘L~ ~ ~eaL2 + A3eoL3 + A4eak4 + ha + A6 (B7)

+= Ble‘L1 + B2e‘A2 + B3eak3 + B4ea~4+~.+B6 (B8)

P = C!le
ahl ah

aA3 + C4e
aL4 ~ ~

+-C2e +Ce3 5 (B9)

The equations for the rolling velocity p and the yawing velocity r
can be obtaine~ from equations (B7) and (B8) by differentiation

P (= ~ A~h~e‘Al + A2~e ah2 + A3k3eak3 + A4L4eah4 ~
3) (B1O)

(
= ~ Blhle

ahl OA2 aL3 aA4 + B
r + B2Qe + ‘3A3e + B4A4e

)
5 (Bll) ●

where the expressions for the coefficients of equations (B7) to (Bll)
are given by equations (6) to (8) in the section “Calculation of Motions.” “
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APPENDIX C

SOLUTION OF BIQUAD~IC EQUATION

Many methods are available, of course, for solving for the roots
of a biquadratic equation. For exsmple, there are Homer’s, Ferrari’s,
Bernoulli’s, Descartes’, and Hitchcock*s methods; various methods of
solution by trial; and also various gyaphical methods such as that
given in reference 1. Solution by trial in which synthetic division is
used, however, is recommended as being the simplest method for most
lateral stability work. The characteristic equation for the lateral
motions of an airplsme

AX4+BA3+CX2+DX+E =0

generally has two real.roots and a pair of mnjugate complex roots. For
these cases the two real,roots can be factored out easily and the
remaining quadratic solved for the conjugate complex roots. In the few
cases for which all four of the roots of the characteristic equation
sxe complex, Descsrtes’ method can be used to factor the biquadratic
equation into two quadratics. When there are real roots, solution by -
Descartes’
Sill@y end
methods of

method requires more time than factoring out the real roots
consequently is not recommended for general use. These
solution are explained in the following sections.

Solution by Trial by Means of Synthetic Division

Solution for real roots by trial by means of synthetic division
consists of successive approximations of a root and checking by synthetic
ditision until the root is determined to the desired degree of accuracy.
This check by sydhetlc division is based on the fact that if a is a
root of a polynomial f(x) then x - a is a factor of f(x) and con-
sequently no remainder is left when f(x) is divided by x - a.

The method of solting the stability biquadratic equation by ‘trial
with synthetic division is explained in three steps in the following
sections. First, the rule for synthetic division -d a numerical
example are given. Second, the specific use of synthetic division for
factoring a biquadratic is illustrated by a simplified example for
which the roots are known. This example shows how the cubic md then
the quadratic factors of the biquadratic are obtained. Third, the use
of synthetic division in extracting the roots of a representative .-

___
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.

characteristic stability biquadratic is illustrated with special refer-
ence to methods of making the first approximations of the real roots.

Explanation of synthetic division.- Synthetic division is explained
in almost all algebra text books but is present-edherein for the con-
venience of the reader. The rule for synthetic division may be given
as follows:

Assume that a polynomial in x (f(x))
write the coefficients of the polynomial in
a coefficient is lacking.

Multiply a by the first coefficient;
product to the next coefficient.

is to be divided by x - aj

order, supplying O when

smd add (algebraically)the

Multiply this sum by a, add to the next coefficient, and proceed
until all the coefficients are used. The last sum is the remainder and
also the value of the polynomial when a is substituted for the
variable x.

For exsnple, divide X4 + 3x3 + 3x - x - .

tibyx-3 ,

Use of synthetic division in factoring out roots.- The use of
synthetic division to factor out two known rational roots of a biquadratic
equation is illustrated by the following simple example. These two
rational roots represent the two real roots of the characteristic sta-
bility equation which, of course, are not normslly known but can,be
approximated by the method given in the “nextsection of this paper.

One factor of the biquadratic is x - 1 so there is no remainder
when the biquadratic is divided by the ?mot 1

1+3+3-1-6

+1+4+7+6I.
1+4 +7+ 6 0

Since the remainder is O, x - 1 is one factor of the biquadratic

equation and x3 + 4X2 + 7x + 6 is another factor. Inasmu-chas a
cubic equation must have at least one real root, a second real root

.

—
.

.

D

w
of

.
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the biquadratic
example x+2

.

*

●

9

*.

eqyation can be factored out of
is a factor so divide the cubic

1+ ’4+7+6

-2- 4-6 -2
1+2+3 o

The factors of the biquadratic then are x - 1,

61

the cubic. For
by the root -2.

.

x+2, snd x2+2x+ 3.
The quadratic factor &an be solved for its roots by th~ quadratic
formula. For exsmple .___

-2 *~G
x= 2 =-l*i@

Exsm@e of application to characteristic equation.- Reasonably
accurate first approxhations to the real roots of the characteristic
equation csm be obtained from simple formulas. Successively closer
approximations can then be obtained by interpolating from the remainders.
The following exsmple illustrates the application of this method to
obtaining the roots of the stability biquadratic. The biquadratic .-

X4 + lo.k3~3 + 16.32L2 + 68.6A - 9.10 = o

is of the form

AA4+BX3+CA2+DA+E =0

Since the coefficient E is generally much smaller than coefficient D
in latersl stability work, one of the real roots (usually the smaller
of the two) is approximately equal to -E/D or it may be more closely
approximated by the equation

E
x—=- CE

DD-—

or for the particular case

= O.wg
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Approximating the root by synthetic division

1.+ 10.43 + 16.32 + 68.6 - 9.10 Approximation

+ .13 + 1.36 + 2.3 + 9.10 .1284 2

.

NACA TN 2409 .

u

.13+ 1.36 + 2.3 +9.14 1.129 1
1 ; 10.56+ 17.68i-70.9+ .04 1

I + 10.56+ 17.68+ 70.9 + o 2

For this root, the second approximation was determined by dividing the
coefficient E by the four~~ suk from the quotient -

-9.10-—
70.9

This procedure generally provides a good second
small real root.

The cubic equation obtained by setting

L3 + 10.56A2

equal to zero is of the form

aA3 + b~2

In most lateral-stabilitywork, a
approximately equal to -b or it
the equation

+ 17.68A+ 70.9

approximation

+ch+d=O

—

for the

real root of this equation will be
may be more closely approxtiated by

b3+d
h—=-

b2+c

or for the particular case

. .
.

.

.

3
A=- (10.56) + 70.9 = -9.65

(10.56)2+ 17.68
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● Approximating

.G3
,

the root by synthetic ditision

. 1 + 10.56+ 17.68+ 70.9 Approximation

- 9.48 -10.20 -70.9 -9.485 6 . ..

- 9.49 -10.16 -71.4 -9.49 5’

- 9.48 -10.25 -70.4 -9.48 4

- 9.45 -10.50 -67.9 -9.45 3

- 9.55 - 9.64 -76.8 -9●55 2

- 9.C5 - 8.78 - 85.9 ! -9.65 1
1 + 0.91 + 8.90 -15.0 1

1 + 1.01 + 8.04 - 5.9 2
.

1 + 1.11 + 7.18 + 3.0 “3

b I + 1.08 + 7.43 + 0.5 4

1 + 1.07 + 7.52 - 0.5 5
e

1 + 1.075 + 7.48 0 6

-
For this lsrge real root there is no simple method of determining the
second approximation as there was in the case of the smaller real root.
The magnitude of the estimated root in this case is arbitrarily
increased or decreased slightly from the first approximation. From the
remainders determined from the first two approximations, a fairly close
third approximation can then be made.

Factoring the quadratic equation obtained by setting
.

L2 + 10075h + 7.48
.-

.

equal to zero by use of the quadratic formula gives the final two roots
of the biquadratic equation.

1.16 - 29.92”
k=-

2

= r“-0.538* i ~ —

= -0.538* 2.68i
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The roots of the biquadratic equati,onmay be checked by multiplying
u

the four factors to’determine whether their product equals the original
bfquadratic

--
.

(k - 0.1284)(x+ g.k85)(x + 0.538+ 2.68i)(A+ 0.538 -.2.681)= (X2 + 9.457x- -

1.220)(x2 + l.o~ + 7,47)= L4 + 10.43A3+ 16.32h2+ 6/3.6A- 9.10

Solution by Descartes’ Method

Descartes’ method of solving a biquadratic equation is particularly
useful for solving equations which do not have any real roots. This
method is explained in most text books on advanced algebra and theory of
equations. In general, the method consists of reducing the biquadratic
equation to a cubic equation which can be solved easily. One root of
the cubic equation is used to form two quadratic equations the roots of
which are used to obtain the roots of the biquadratic equation.

Methud.- Reduce the general biquadratic equation

~4+BL3+CL2+DA+E =0

to the form

.

=0h4+bk.3+ch2+dA+e
.

by dividing by A.

Obtain the values of q, r, and s from the following equations:

q=c-:b2

bc 13r = d - —+-b
2 8
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. and form the equation
.-

.

( )x6+*qx4+ *q2. ;s#. &r2=o

65

and solve this cubic
Solution by trisl by
Determine the values

.

equation in # for one of its roots x2 + O.
means of synthetic division is recommended.
of Z and m from the equation

q2+2x2+&m=— r-

Substitute the values of Z and m and the vslue of x used in
obtaining Z and m in the equations .—

h

y2+2xy+bcl :

.

and solve these quadratic equations for their roots y from which the
roots of the biquadratic equation may be obtained from the following
relation:

.

.
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SPECIAL NOTATIONUSEllDJ CALCULATINGMOTIONSWERR

TIU CRARAC!lTRIS~ICEQUATIONHAS COMPLEXROOTS

When two of the roots Al and A2 are co@@e complex, the coefficients Al and AP,

BI aud I@, Cl and C2 will be conjugate complex. If R + Ii is one of the rmts Al and
if the powers of Al are expressed as

then

L1 = R1 + Ili

X12.R2+$i

Substitution of the root R + Ii in tbe expression for Al gives

The division of these complex numbers is indicated by the equation

.4 ,. . . ,
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X1 i-yll ‘1%2 + yly2 . ‘&l - ‘1Y2 ~

x2+ Y2i= xJ+y22 *2 + y22

It is evident from these relations that Al iB a complexnumber. In
used to re~esent the real and hmginary psrts of Al as follows:

Al = RA + lAi

~ is the conjugateof A1 snd will be referredto as

~= RA-IAi

By procedures similer to those for the A coefficients,

● ✌

this case new symbols are

which may be referred to as

BI .RB + IBf

and

~. RB-IBl

which may be referred ta as



and

C2=Rc-~i

Similar analysis shows that, if the roots k.3 and L4 ere also conjugate complex quatrtities

(k3 =R’ + I’f and L4=R’ - I’i),then

Aj = R’A+ I’Ai
,

and

A1=R’A - I’Ai

where

Also,

‘3
=RIB + I!Bi

and

.

B4=R’B - I’Bi

,. . .
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Similarly,

C3 =R’c + I’ci

and

where

/

I
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Figure 1.- The stability system of axes. Arrows indicate positive direc-
tions of moments~ forces, and singles. This system of axes is defined
as an orthogonal system having the origin at the center of gravity and
in which the Z-axis is in the plane of symmetry and perpendicular to
the relative wind, the X-axis is in the plane of symmetry and perpendi-
cular to the Z-axis, and the Y-axis is perpendicular to the plfie of

.

Eymme*ry. At a constant angle of attack, these ~es are fixed in the
airplane.
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